A New Method to Segment the Multiple Sclerosis Lesions on Brain Magnetic Resonance Images
نویسندگان
چکیده
Automatic segmentation of multiple sclerosis (MS) lesions in brain magnetic resonance imaging (MRI) has been widely investigated in the recent years with the goal of helping MS diagnosis and patient follow-up. In this research work, Gaussian mixture model (GMM) has been used to segment the MS lesions in MRIs, including T1-weighted (T1-w), T2-w, and T2-fluid attenuation inversion recovery. Usually, GMM is optimized by using expectation-maximization (EM) algorithm. The drawbacks of this optimization method are, it does not converge to optimal maximum or minimum and furthermore, there are some voxels, which do not fit the GMM model and have to be rejected. So, GMM is time-consuming and not too much efficient. To overcome these limitations, in this research study, at the first step, GMM was applied to segment only T1-w images by using 100 various starting points when the maximum number of iterations was considered to be 50. Then segmentation results were used to calculate the parameters of the other two images. Furthermore, FAST-trimmed likelihood estimator algorithm was applied to determine which voxels should be rejected. The output result of the segmentation was classified in three classes; White and Gray matters, cerebrospinal fluid, and some rejected voxels which prone to be MS. In the next phase, MS lesions were detected by using some heuristic rules. This new method was applied on the brain MRIs of 25 patients from two hospitals. The automatic segmentation outputs were scored by two specialists and the results show that our method has the capability to segment the MS lesions with dice similarity coefficient score of 0.82. The results showed a better performance for the proposed approach, in comparison to those of previous works with less time-consuming.
منابع مشابه
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملThe Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques
Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...
متن کاملP9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملSegmentation of Multide Sclerosis Lesions
AbstructTo segment brain tissues in magnetic resonance images of the brain, we have implemented a stochastic relaxation method which utilizes partial volume analysis for every brain voxel, and operates on fully three-dimensional (3-D) data. However, there are still problems with automatically or semi-automatically segmenting thick magnetic resonance (MR) slices, particularly when trying to segm...
متن کاملMultiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)
Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015